How the Experts Algorithm Can Help Solve LPs Online

نویسندگان

  • Anupam Gupta
  • Marco Molinaro
چکیده

We consider the problem of solving packing/covering LPs online, when the columns of the constraint matrix are presented in random order. This problem has received much attention: the main open question is to figure out how large the right-hand sides of the LPs have to be (compared to the entries on the left-hand side of the constraint) to get (1 + ε)-approximations online? It is known that the RHS has to be Ω(ε logm) times the left-hand sides, where m is the number of constraints. In this paper we give a primal-dual algorithm to achieve this bound for all packing LPs, and also for a class of mixed packing/covering LPs. Our algorithms construct dual solutions using a regret-minimizing online learning algorithm in a black-box fashion, and use them to construct primal solutions. The adversarial guarantee that holds for the constructed duals help us to take care of most of the correlations that arise in the algorithm; the remaining correlations are handled via martingale concentration and maximal inequalities. These ideas lead to conceptually simple and modular algorithms, which we hope will be useful in other contexts.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A Multi-class Linear Learning Algorithm Related to Winnow with Proof

In this paper, we present Committee, a new multi-class learning algorithm related to the Winnow family of algorithms. Committee is an algorithm for combining the predictions of a set of sub-experts in the online mistake-bounded model of learning. A sub-expert is a special type of attribute that predicts with a distribution over a finite number of classes. Committee learns a linear function of s...

متن کامل

A Multi-class Linear Learning Algorithm Related to Winnow

In this paper, we present Committee, a new multi-class learning algorithm related to the Winnow family of algorithms. Committee is an algorithm for combining the predictions of a set of sub-experts in the online mistake-bounded model of learning. A sub-expert is a special type of attribute that predicts with a distribution over a finite number of classes. Committee learns a linear function of s...

متن کامل

The Introduction of a Heuristic Mutation Operator to Strengthen the Discovery Component of XCS

The extended classifier systems (XCS) by producing a set of rules is (classifier) trying to solve learning problems as online. XCS is a rather complex combination of genetic algorithm and reinforcement learning that using genetic algorithm tries to discover the encouraging rules and value them by reinforcement learning. Among the important factors in the performance of XCS is the possibility to...

متن کامل

The Introduction of a Heuristic Mutation Operator to Strengthen the Discovery Component of XCS

The extended classifier systems (XCS) by producing a set of rules is (classifier) trying to solve learning problems as online. XCS is a rather complex combination of genetic algorithm and reinforcement learning that using genetic algorithm tries to discover the encouraging rules and value them by reinforcement learning. Among the important factors in the performance of XCS is the possibility to...

متن کامل

How Can Bee Colony Algorithm Serve Medicine?

Healthcare professionals usually should make complex decisions with far reaching consequences and associated risks in health care fields. As it was demonstrated in other industries, the ability to drill down into pertinent data to explore knowledge behind the data can greatly facilitate superior, informed decisions to ensue the facts. Nature has always inspired researchers to develop models of ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Math. Oper. Res.

دوره 41  شماره 

صفحات  -

تاریخ انتشار 2016